Distant Supervision for Relation Extraction via Piecewise Convolutional Neural Networks
نویسندگان
چکیده
Two problems arise when using distant supervision for relation extraction. First, in this method, an already existing knowledge base is heuristically aligned to texts, and the alignment results are treated as labeled data. However, the heuristic alignment can fail, resulting in wrong label problem. In addition, in previous approaches, statistical models have typically been applied to ad hoc features. The noise that originates from the feature extraction process can cause poor performance. In this paper, we propose a novel model dubbed the Piecewise Convolutional Neural Networks (PCNNs) with multi-instance learning to address these two problems. To solve the first problem, distant supervised relation extraction is treated as a multi-instance problem in which the uncertainty of instance labels is taken into account. To address the latter problem, we avoid feature engineering and instead adopt convolutional architecture with piecewise max pooling to automatically learn relevant features. Experiments show that our method is effective and outperforms several competitive baseline methods.
منابع مشابه
Neural Relation Extraction with Selective Attention over Instances
Distant supervised relation extraction has been widely used to find novel relational facts from text. However, distant supervision inevitably accompanies with the wrong labelling problem, and these noisy data will substantially hurt the performance of relation extraction. To alleviate this issue, we propose a sentence-level attention-based model for relation extraction. In this model, we employ...
متن کاملRelation Extraction with Multi-instance Multi-label Convolutional Neural Networks
Distant supervision is an efficient approach that automatically generates labeled data for relation extraction (RE). Traditional distantly supervised RE systems rely heavily on handcrafted features, and hence suffer from error propagation. Recently, a neural network architecture has been proposed to automatically extract features for relation classification. However, this approach follows the t...
متن کاملUsing Cost-Sensitive Ranking Loss to Improve Distant Supervised Relation Extraction
Recently, many researchers have concentrated on using neural networks to learn features for Distant Supervised Relation Extraction (DSRE). However, these approaches generally employ a softmax classifier with cross-entropy loss, and bring the noise of artificial class NA into classification process. Moreover, the class imbalance problem is serious in the automatically labeled data, and results i...
متن کاملOhioState at SemEval-2018 Task 7: Exploiting Data Augmentation for Relation Classification in Scientific Papers using Piecewise Convolutional Neural Networks
We describe our system for SemEval-2018 Shared Task on Semantic Relation Extraction and Classification in Scientific Papers where we focus on the Classification task. Our simple piecewise convolution neural encoder performs decently in an end to end manner. A simple inter-task data augmentation significantly boosts the performance of the model. Our best-performing systems stood 8th out of 20 te...
متن کاملSwissCheese at SemEval-2016 Task 4: Sentiment Classification Using an Ensemble of Convolutional Neural Networks with Distant Supervision
In this paper, we propose a classifier for predicting message-level sentiments of English micro-blog messages from Twitter. Our method builds upon the convolutional sentence embedding approach proposed by (Severyn and Moschitti, 2015a; Severyn and Moschitti, 2015b). We leverage large amounts of data with distant supervision to train an ensemble of 2-layer convolutional neural networks whose pre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015